

SUCCESS KEY TEST SERIES

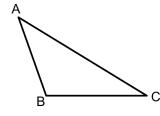
X (English)

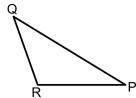
(Unit test-1 Math-2 (ch-1,2))

Mathematics Part - II-

DATE:	
TIME: 2 hrs	
MARKS: 30	

SEAT NO:


Q.1 A) Choose the correct alternative.


(5)

- 1) For a given \triangle ABC, \triangle ABC \sim \triangle ABC. This property is known as
 - a. Property of reflexivity
- b. Property of symmetry
- c. Property of congruency
- d. Property of transitivity
- 2) In \triangle ABC and \triangle PQR, in a one to one correspondence.

$$\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$$
 then

- a. △PQR ~ △ABC
- b. $\triangle PQR \sim \triangle CAB$ c. $\triangle CBA \sim \triangle PQR$ d. $\triangle BCA \sim \triangle PQR$



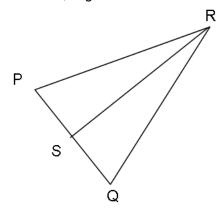
3) \triangle ABC and \triangle XYZ are equilateral triangles.

A (
$$\triangle$$
 ABC) : A (\triangle XYZ) = 25 : 36. Find $\left(\frac{AC}{XZ}\right)^2$

- a. $\frac{5}{6}$ b. $\frac{6}{5}$ c. $\frac{25}{36}$ d. $\frac{36}{25}$

4)

A girl walks 200 m towards East and then she walks 150 m towards North. The distance of the girl starting point is

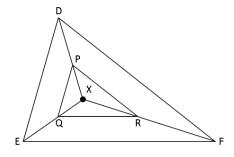

- a. 350 m
- b. 250 m
- c. 300 m
- d. 225 m
- 5) In \triangle PQR, seg ST || seg MR. Which of the following is true?

 - a. $\frac{PQ}{RS} = \frac{PR}{RT}$ b. $\frac{A(\Delta PQR)}{A(\Delta PST)} = \frac{PQ^2}{PS^2}$ c. $\frac{A(\Delta PQR)}{A(\Delta PST)} = \frac{PQ}{PS}$
- d. None of above

Solve the following questions. (Any two)

(4)

1) In \triangle PQR, seg RS bisects \angle R. If PR = 15, RQ = 20, PS = 12 then find SQ.



- 2) Identify, with reason, if the following is Pythagorean triplet. 3, 5, 4
- In \angle PQR = 90°, seg QN \perp seg PR, PN = 9, NR = 16. Find QN. 3)

Complete the following Activities. (Any two)

(4)

In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.

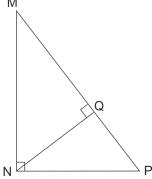
In $\triangle XDE$, $PQ \parallel DE$

In∆XEF, QR∥EF

... (I) (Basic proportionality theorem)

... (II) (Basic proportionality theorem)

____=


... from (I) and (II)

seg PR∥seg DF

- ... (Converse of basic proportionality theorem)
- 2) If $\triangle ABC \sim \triangle PQR$ and AB : PQ = 2 : 3, then fill in the blanks.

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{2^2}{3^2} = \frac{2}{3^2}$$

3) In \angle MNP = 90°, seg NQ \perp seg MP, MQ = 9, QP = 4, find NQ.

 $In\Delta MNP$,

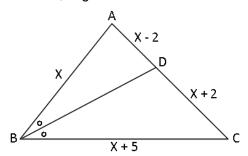
$$\angle MNP = 90^{\circ}$$

...(Given)

...(Given)

... By property of geometric mean

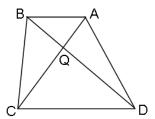
$$NQ^2 = MQ \times \underline{\hspace{1cm}}$$


- \therefore NQ² = ____
- \therefore NQ² =
- ∴ NQ =

...(Taking square roots on both the sides)

B) Solve the following questions. (Any two)

(4)


- 1) In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm then find RS and ST.
- 2) Prove that: In a right-angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided.
- 3) In \triangle ABC, seg BD bisects \angle ABC. If AB = x, BC = x + 5, AD = x 2, DC = x + 2, then find the value of x.

Q.3 Solve the following questions. (Any two)

(6)

1) Diagonals of a quadrilateral ABCD intersect in point Q. If 2QA = QC , 2QB = QD, then prove that DC = 2AB.

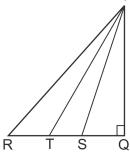
2) In a \triangle ABC, D and E are points on the sides AB and AC respectively such that AD = 5.7cm, BD = 9.5cm, AE = 3.3cm, and AC = 8.8Cm. Is DE \parallel BC? Justify your answer.

3) In $\triangle PQR$, $\angle PQR = 90^{\circ}$, seg QS \perp seg PR then find x, y, z.

Q.4 Solve the following questions. (Any one)

(4)

- 1) The ratio of the intercepts made on a transversal by three parallel lines is equal to the ratio of the corresponding intercepts made on any other transversal by the same parallel lines.
- 2) Prove that:


"If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion."

Q.5 Solve the following questions. (Any one)

(3)

1) In an isosceles triangle ABC, AB = AC, and D is a point on BC produce, Prove that $AD^2 = AC^2 + BD.CD$

2)

In the given figure, \triangle PQR is right angled at Q and points S and T trisect side QR. Prove that 8PT² = 3PR² + 5PS²